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a b s t r a c t

Free vibration analysis of laminated beams with delamination has been presented

in this paper. A 2-D plane stress mixed finite element model developed by the authors

[G.S. Ramtekkar, Y.M. Desai, A.H. Shah, Natural vibrations of laminated composite beams

by using mixed finite element modeling, Journal of Sound and Vibration 257(4) (2002)

635–641.] has been employed. Two models, namely the unconstrained-interface model

and the contact-interface model have been proposed for the computation of frequencies

and the mode shapes of delaminated beams. Laminated beams with mid-plane

delamination as well as off-mid-plane delamination have been considered and the

results have been compared with various theoretical and experimental results available

in the literature. It has been concluded that the contact-interface model presents a

realistic behaviour of the dynamics of delaminated beams whereas the unconstrained-

interface model under-predicts the frequencies, particularly at the higher modes

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Advanced composite materials are finding increasing application in aircraft, automobiles, marine and submarine
vehicles besides other engineering applications owing to their high specific strength and stiffness. Consequently, these
applications have stimulated interest in the development of mathematical models for prediction of the dynamic behaviour
of the physical models with sufficient accuracy. Moreover, all these applications of composite materials in advanced
technology areas, where precision and reliability play a paramount role, demand clear understanding of their behaviour
and performance under severe operating environments.

One of the commonly encountered types of defects or damage in laminated composite structures is delamination.
Delaminations may originate during fabrication or may be service-induced, such as by impact of fatigue loading.
Delaminations not only affect the strength and integrity of the structure but also cause the reduction of the stiffness, thus
affecting its vibration and stability characteristics. This paper presents a study on the effect of delamination on the
vibration characteristics of laminated beams.

Wang et al. [2] performed the free vibration analysis of the isotropic beams with split at the mid-plane by developing an
analytical model. The model allows the free deformation of upper and lower layer at the split location. Mujumdar and
Suryanarayan [3] presented two models namely the free mode model and the constrained mode model for the flexural
vibrations of isotropic beams with delamination at the mid-plane as well as at the off-mid-plane locations. Experimental
results have also been presented for various cases of delaminations in the beams. The paper concluded that the constrained
All rights reserved.
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Nomenclature

a, h length and depth (thickness) of a laminate
[D] constitutive matrix with reference to the

element reference axes x, y, z

Dij coefficients of constitutive matrix with refer-
ence to the element reference axes x, z

E1, E3 Young’s moduli of lamina in the material
principal directions 1, 3

G13 Shear moduli of a lamina
[K]e, [K] element property matrix and global property

matrix, respectively
[L] derivative matrix
Le, Te, Ue total energy, kinetic energy and strain energy

of an element
2Lx, 2Lz element’s dimensions
[M]e, [M] element inertia matrix and global inertia

matrix, respectively
[N] shape function matrix
{q}, {Q} element degree-of-freedom vector and global

degree-of-freedom vector, respectively
s aspect ratio of the laminate ¼ a/h
T time
[Td] transformation matrix
u, w displacement components along element’s

reference axes x, z

u or fug displacement vector
Ū, W̄ non-dimensionalized displacement compo-

nents along laminate’s reference axes X, Z

U, W displacement components along laminate’s
reference axes X, Z

x, z Cartesian coordinate system for an element
(local coordinates)

X, Z Cartesian coordinate system for a laminate
(global coordinates)

X̄, Z̄ X/a, Z/h (non-dimensionalized dimensions of
laminate)

1, 3 Cartesian coordinate system for a lamina; the
fibre direction and the transverse to fibre
directions (material principal directions)

a inclination of the fibres of a lamina with the
positive direction of laminate X-axis, measured
in anticlockwise direction

� or f�g strain vector
ex, ez, gxz components of strain with respect to the

element’s reference axes x, z

e1, e3, g13 components of strain with respect to the
lamina’s reference axes 1, 3

eX, eZ, gXZcomponents of strain with respect to the
laminate’s reference axes X, Z

nij Poisson’s ratio
x, Z X/Lx and z/Lz, respectively
r mass density
s or fsg stress vector
sx, sz, txz components of stress with respect to the

element’s reference axes x, z

s1, s3, t13 components of stress with respect to the
lamina’s reference axes 1, 3

sX, sZ, tXZ components of stress with respect to the
laminate’s reference axes X, Z

s̄Z , t̄XZ non-dimensionalized/normalized components
of the stress at a point within a laminate with
respect to the laminate’s reference axes X, Z

o natural frequency
ō non-dimensionalized natural frequency
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mode model in which the transverse displacement and the normal stress of the upper and lower layer at the delaminated
interface have been constrained to be the same, gives results in good consonance with the experimental results. The free

mode model (similar to the one developed by Wang [2]) under-predicts the frequencies, particularly at the higher modes.
Tracy and Pardoen [4] presented the experimental modal analyses of simply supported beams to find out the effect of

delamination on the natural frequencies of composite laminates. Further, the experimental results are corroborated by
detailed finite element model based on the classical beam theory. Shen and Grady [5] presented experimental and
analytical results for the free vibrations of multilayer laminated beam with delamination of various lengths, located at
different interfaces. The paper presents two analytical models. In the first model the crack interfaces have been assumed to
be in contact along the delaminated region throughout the vibration and the coupling effect has been accounted for in both
the upper and lower plies in the delaminated region. In the second model, the contact between the delamination surfaces
has been neglected. It has been shown that the frequencies obtained through the first model are in better agreement with
the experimental results. An analytical model based on the Timoshenko beam theory has been presented by Hu and Hwu
[6] for the free vibrations of delaminated sandwich beams. The natural frequencies and the mode shapes of the
delaminated composite sandwich beams have been presented in the paper.

Krawczuk et al. [7] presented finite element model for the analysis of natural frequencies of delaminated composite
beams. The influence of the length of delamination and its position on the bending natural frequencies of laminated
cantilever beam has been investigated in the paper. Lee [8] presented a displacement-based layer-wise finite element
model for the analysis of free vibration of delaminated beam. Numerical results showing the effects of the lamination
angle, location, size and number of delamination have been presented. A review paper on the vibration-based model-
dependent damage (delamination) identification and health monitoring for composite structures has been presented by
Zou et al. [9]. The paper deals with various models proposed for the free vibrations of delaminated beams. Karmakar et al.
[10] presented the effect of delamination on free vibration characteristics of graphite-epoxy composite pre-twisted shallow
shells of various stacking sequences considering length of delamination as a parameter. An exhaustive review on the
vibration of delaminated composites has been presented Della et al. [11]. The paper deals with various analytical models
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and numerical analysis for the free vibration of composite laminates. Della et al. [12] developed analytical solutions to
study the free vibrations of multiple delaminated beams under axial compressive loadings. The Euler–Bernoulli beam
theory and free mode and constrained mode assumption in delamination buckling and vibration are used in the analysis.

Various FE models presented in the literature for the free vibrations of delaminated beams are based on the
conventional displacement-based finite element models. Moreover, they are based on either the classical beam theory or
the first order shear deformation theories (i.e. Timoshenko beam theory). It has already been pointed out by the authors [1]
that the mixed layer-wise FE models represent the behaviour of laminated structures more appropriately because of the
better modeling of the kinetics and kinematics of laminated structures. The present analysis has been performed using the
plane-stress mixed FE model described in [1], which has been developed using the Hamilton’s principle. The model ensures
the through thickness continuity of the transverse stress and the displacement components. In addition, it also ensures the
fundamental elastic relations between the stress and the displacement fields throughout the elastic continuum. This is
particularly an important feature of the model, which is lacking in various mixed FE model developed using various
multi-field variational principles. Because the FE model has transverse stresses as the nodal degrees-of-freedom in addition
to the displacement variables, appropriate boundary conditions at the delaminated interface can be enforced.
2. Theoretical formulation

2.1. Formulation of mixed finite element model

A detailed formulation has been presented in [1], however for sake of completeness and also for ready reference the
formulation has been breafly described here.

An anisotropic composite laminated beam consisting of N-layers of orthotropic lamina has been considered for FE
analysis shown in Fig. 1(a,b). The beam has been discretized into a number of plane stress elements. Each element lies
completely within a lamina and no element crosses the interface between any two successive laminae.

A six-node plane stress mixed finite element model shown in Fig. 1(c) has been developed by considering the
displacement fields u(x,z,t) and w(x,z,t) having quadratic variation along longitudinal axis x and cubic variation along
transverse axis z. The displacement fields can be expressed as

ukðx; zÞ ¼
X3

i¼1

gia0ik þ z
X3

i¼1

gia1ik þ z2
X3

i¼1

gia2ik þ z3
X3

i¼1

gia3ik; k ¼ 1;2 (1)
α

X

12 3, Z

b a

h

Typical Plane-Stress Element 

X

ZY

1

4 6

x, ξ

z, η

2Lx

2Lz

5

2 3

Fig. 1. (a) Geometry of composite laminated beam with positive set of reference axes. (b) Geometry of composite lamina (i.e. ply) with positive set of

reference axes. (c) Geometry of six-node plane stress (2-D) element with positive set of reference axes.
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where

g1 ¼
x
2
ðx� 1Þ; g2 ¼ 1� x2; g3 ¼

x
2
ð1þ xÞ; x ¼ x=Lx (2)

and

u1ðx; z; tÞ ¼ uðx; z; tÞ; u2ðx; z; tÞ ¼ wðx; z; tÞ (3)

Further, the generalized coordinates amik ðm ¼ 0;1; . . . ;3Þ are functions of z and the element’s coordinate axes x, z are
parallel to the laminate coordinate system X, Z respectively.

Each lamina in the laminate has been considered to be in the state of plane stress in X–Z plane so that the constitutive
relation for a typical ith lamina with reference to the element’s coordinate system can be shown to be

fsg ¼ ½D�feg (4)

where

fsg ¼ ½sx sz txz�
T; ½D� ¼

D11 D13 0

D13 D33 0

0 0 D55

2
64

3
75 and feg ¼ ½ex ez gxz�

T (5)

The coefficients Dmn are the elastic constants in the element’s axes x, y, z. The transverse stresses can be obtained from
the constitutive Eq. (4) and strain displacement relations as

sz ¼ D13ex þ D33ez ¼ D13
qu

qx
þ D33

qw

qz
and txz ¼ D55gxz ¼ D55

qu

qz
þ
qw

qx

� �
(6)

By using Eqs. (1) and (6), coefficients amik (m ¼ 0, 1, 2, 3; i ¼ 1, 2, 3 and k ¼ 1, 2) can be determined and finally the
displacement fields u(x,z,t) and w(x,z,t) can be expressed in terms of the nodal degrees-of-freedom as

fug ¼ ½u w�T ¼ ½N�fqg (7)

where

½N� ¼ ½N1 N2 N3 N4 N5 N6� and fqg ¼ ½q
�

T
1 q
�

T
2 q
�

T
3 q
�

T
4 q
�

T
5 q
�

T
6�

T (8)

fqng ¼ ½un wn ðtxzÞn ðszÞn�
T and ½Nn� ¼

gif q hif p gif p
1

D55
0

hif p
D13

D33
gif q 0 gif p

1

D33

2
6664

3
7775 (9)

Here, i ¼ 1, 2, 3 for the nodes with x ¼ �1, x ¼ 0 and x ¼ 1, respectively.
p ¼ 3, q ¼ 1 for the nodes with Z ¼ �1 and p ¼ 4, q ¼ 2 for the nodes with Z ¼ 1.
and

hi ¼ �
qgi

qx
; f 1 ¼

1

4
ð2� 3Zþ Z3Þ; f 2 ¼

1

4
ð2þ 3Z� Z3Þ; f 3 ¼

Lz

4
ð1� Z� Z2 þ Z3Þ;

f 4 ¼
Lz

4
ð�1� Zþ Z2 þ Z3Þ; Z ¼ z=Lz (10)

In the absence of external and damping forces (i.e. undamped natural vibration), the total energy of an element within a
lamina can be given by

Le ¼ Te � Ue (11)

Here, Ue and Te represent the internal strain and kinetic energies, respectively. Functional in Eq. (11) can be expressed in the
matrix form for linear elastic system as

Le ¼
1

2

Z
rf _ugTf _ugdv�

Z
fegTfsgdv

� �
(12)

where r is the mass density of the material, and f _ug ¼ dfug=dt

The strain vector feg and the stress vector {s} can be expressed as

feg ¼ ½B�fqg and fsg ¼ ½D�½B�fqg (13)

where

½B� ¼ ½B1 B2 B3 B4 B5 B6� (14)
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and

½Bn� ¼

q
qx

0

0
q
qz

q
qz

q
qx

2
66666664

3
77777775
½Nn� ¼

�hif q h0if p �hif p
1

D55
0

hif̄ p
D13

D33
gif̄ q 0 gif̄ p

gif̄ q þ h0if p
D13

D33
hif̄ p � hif q gif̄ p

1

D55
�hif̄ p

1

D33

2
666666664

3
777777775

(15)

Furthermore

h0i ¼
qhi

qx
; f̄ j ¼

qf j

qz
; j ¼ p or q (16)

By summing up the total energies over all the elements and applying Hamilton’s principle [13]

d
Z t2

t1

L dt ¼ 0 (17)

where L ¼
P

eLe and d implies first variation. The global equation of motion, in the absence of external forces, can be
obtained as

½M�f €Qg þ ½K�fQg ¼ 0 (18)

Here, global inertia matrix [M], global property matrix [K], and global nodal degrees-of-freedom vector {Q} are defined as

½M� ¼
X

e

½M�e; ½K� ¼
X

e

½K�e; fQg ¼
X

e

fqg; (19)

where

½Me� ¼ r
Z
½N�T½N�dv; ½Ke� ¼

Z
½B�T½D�½B�dv and f €Qg ¼

d2
fQg

dt2
(20)

For harmonic vibrations, the general solution of equation of motion (18) can be considered of the form fQg ¼ fQ̂geiot , where
fQ̂g is the modal vector and o is the natural frequency. On substitution Eq. (18) results in the following generalized
eigenvalue problem

ð½K� �o2½M�ÞfQ̂g ¼ 0 (21)

Solution of Eq. (21) yields the natural frequency o and the corresponding eigenvector fQ̂g after the imposition of boundary
conditions.

2.2. Models for analysis of composite laminated beams with delamination

The two models namely the unconstrained-interface model and the contact-interface model has been developed for the
free vibrations of delaminated beams. Fig. 2(a) shows the cross section of a laminated beam with delamination at an
arbitrary location. The finite element meshing of the beam is also shown in the figure. Because of high stress concentration
near delamination, finer mesh is proposed in these regions. As shown in Fig. 2(b), the elements have been separated at the
delaminated region by allocating different node numbers to the nodes on the lower and the upper delaminated interfaces.
However in the regions with no delamination the usual pattern of node numbering has been followed. Following is the
description for the two models developed for the analysis of delaminated beams.

Unconstrained-interface model: This model is based on the assumption that there is no contact between the upper and
the lower interfaces in the delaminated region. It implies that the upper and the lower layers in this region are free to
undergo the transverse displacements as per their condition of equilibrium without considerations of constraints imposed
by the adjacent layers. This may lead to overlapping of the upper and the lower layers in the delaminated region, thereby
violating the compatibility of deformation. Based on the assumed conditions, all the displacement degrees-of-freedom u

and w have been kept unrestrained at the nodes on the upper and the lower delaminated interfaces. The no-contact
condition between the upper and the lower interface at the delaminated region is imposed by explicitly setting the
transverse stress degrees-of-freedom txz and sz to zero.

Contact-interface model: The upper and the lower delaminated interfaces have been assumed to be in contact along the
delaminated region and the coupling effect is accounted for both the upper as well as the lower interfaces at the
delaminated region in this model. The tendency of one of the delaminated layer to overlap the other layer will be resisted
by the development of a contact pressure distribution between the adjacent layers through this model. Thus the model will
be able to ensure compatibility of deformation. The coupling between the transverse displacement ‘w’ and the transverse
normal stress ‘sz’ throughout the delaminated region have been ensured by the pre and the post multiplication of the
transpose of transformation matrix i.e. [Td]T and the transformation matrix [Td], respectively, to the global property matrix
[K] and the global inertia matrix [M]. However, the transverse shear stress degrees-of-freedom txz has been explicitly set to
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zero, assuming the upper and the lower delaminated interfaces to be frictionless. The in-plane displacement ‘u’ has been
kept unrestrained. The mathematical operation involved in the transformation of the global property matrix [K] and the
global inertia matrix [M] is shown below.

A typical form of the transformation matrix [Td] has been presented here which is for a typical set of upper-lower nodes
(shown with the symbol on the upper and the lower delaminated interfaces in Fig. 2(b)). The degrees-of-freedom at
the typical node on the upper delaminated interface are uu, wu, txzu and szu. On the other hand ul, wl, txzl and szl are the
degrees-of-freedom at the typical node on the lower delaminated interface. The typical transformation matrix [Td] can be
obtained as

(22)

The modified global property matrix [Km] and the modified global inertia matrix [Mm] are given by

½Km� ¼ ½Td�
T½K�½Td�;

½Mm� ¼ ½Td�
T½M�½Td�; (23)

where [K] and [M] are the global property and inertia matrices, respectively.
3. Numerical investigations

Numerical investigations have been undertaken for the free vibrations of layered isotropic as well as cross-ply laminated
beams having delamination at specified locations. The analysis has been conducted using two models namely
unconstrained-interface model and contact-interface model. The boundary conditions and the material properties are
tabulated in Tables 1 and 2, respectively.

Illustrative examples are discussed in the following paragraphs,
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Delaminated region 

Coarse mesh Fine 
mesh 

Fine 
mesh 

(if fixed support) 

Fine 
mesh 

(if fixed support) 

Fine 
mesh

Coarse 
mesh 

Support Support 

Coarse mesh

Lower delaminated interface

Upper delaminated interface

Delaminated region Region with no 
delamination 

Region with no 
delamination 

Typical nodes

Fig. 2. (a) Cross-section of a composite laminate showing delaminated region and typical finite element meshing. (b) Delaminated region (exaggerated)

showing finite element nodes.

Table 1
Boundary conditions.

Description Location Degree-of-freedom

u w txz sz

(a) Beam with delamination under clamped

supports at both the ends

X ¼ 0 and X ¼ a 0 0 – –

Z ¼7h/2 – 0 0

At delaminated interface of upper and lower

layer:

(i) Unconstrained-interface model – – 0 0

(ii) Contact-interface model – wu ¼ wl 0 szu ¼ szl

(b) Beam with delamination under clamped-

free supports condition

X ¼ 0 0 0 – 0

X ¼ a – – 0 –

Z ¼7h/2 – – 0 0

At delaminated interface of upper and lower

layer:

(i) Unconstrained-interface model – – 0 0

(ii) Contact-interface model – wu ¼ wl 0 szu ¼ szl

Note: (i) ‘–’ indicates no boundary condition imposed on that degree-of-freedom at that location.

(ii) wu, wl are the transverse displacement and su, sl are the transverse normal stress degree-of-freedom at the upper and the lower delaminated interface,

respectively.
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Example 1. An isotropic (n ¼ 0.3) thin beam shown in Fig. 3 has been considered for free vibration analysis. The beam is
provided with the clamped–clamped supports for which the imposed boundary conditions are tabulated in Table 1(a). The
free vibration analysis using the unconstrained-interface model has been conducted for various mid-plane delaminations
(i.e. ht/h ¼ 0.5) located at the centre of the beam (i.e. al/a ¼ 0.5). The non-dimensional natural frequencies ō ðō ¼
oa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=EI

p
Þ for the first three modes are presented in Table 3 along with the results produced by Wang et al. [2] and those

by Lee [8]. The results from the present analysis have been found in good agreement with the available results.
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Table 2
Material properties.

Example Source Properties

3 Shen and Grady [5] E1 ¼ 134.49 GPa; E3 ¼ 10.34 GPa; G13 ¼ 5.00 GPa; n ¼ 0.3; r ¼ 1477.60E�12 N s2/mm4

Legend: 
(i)    a -  length of the beam 
(ii)   h - depth of the beam 
(iii)  al - distance of the center of delamination from the
        left support    
(iv)  hl - length of delaminated portion 
(v)   ht - depth of delamination from the top 

a

h

hl ht

delamination

Left support

al

Right support

Fig. 3. Geometry of the delaminated beam.

Table 3
Natural frequencies of a clamped beam with a mid-plane delamination (al ¼ a/2) for various hl/a.

hl/a Present analysis [unconstrained-interface model] Wang et al. [2] Lee [8]

ō1 ō2 ō3 ō1 ō2 ō3 ō1 ō2 ō3

0.0 22.39 61.81 121.36 22.39 61.67 120.91 22.36 61.61 120.68

0.1 22.37 60.93 120.87 22.37 60.76 120.81 22.36 60.74 120.62

0.2 22.36 56.10 119.19 22.35 55.97 118.76 22.35 55.95 118.69

0.3 22.23 48.97 109.19 22.23 49.00 109.04 22.23 48.97 109.03

0.4 21.67 44.56 93.51 21.83 43.87 93.57 21.82 43.86 93.51

0.5 20.88 41.51 82.31 20.88 41.45 82.29 20.88 41.50 82.23

0.6 19.31 41.10 77.91 19.29 40.93 77.64 19.28 41.01 77.64

0.7 17.22 40.84 77.25 17.23 40.72 77.05 17.22 40.80 77.12

0.8 15.06 39.18 75.83 15.05 39.01 75.33 15.05 39.04 75.39

0.9 12.99 35.41 69.30 13.00 35.38 69.17 12.99 35.38 69.16
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Example 2. An isotropic (n ¼ 0.3) thin beam with off-midplane delamination (ht/h ¼ 0.33) shown in Fig. 3 has been
considered for free vibrations. The beam is supported under the clamped-free boundary conditions as tabulated in
Table 1(b). The free vibrations have been investigated using the unconstrained-interface model and the contact-interface

model; and the frequencies for the first two modes are reported in Table 4. It can be observed that the frequencies
computed by the contact-interface model for the first as well as second mode closely matches with the experimental
results obtained by Mujumdar and Suryanarayan [3]. For the first mode of vibration, the unconstrained-interface model has
also been found to yield frequencies, matching with the experimental results. However, for the second mode, the
unconstrained-interface model yields low frequencies in comparison to the experimental results. The reason for this
discrepancy may be attributed to the fact that the influence of individual delaminated layer becomes more pronounced in
case of the unconstrained-interface model for higher modes of vibrations. Thus the beam tends to be relatively more flexible.
However, in case of the contact-interface model, because the upper and the lower layers are constrained to act together by
imposing the condition of constrained transverse displacement ‘w’ and transverse normal stress ‘sz’, the beam maintains
its structural property (flexibility) even at higher modes of vibrations.

Example 3. An eight-layer symmetric cross-ply laminated (01/901)2s beam, under the clamped-free supports is considered
for analysis. Boundary conditions are tabulated in Table 1(b), whereas the material properties are given in Table 2. The
beam showing various interfaces and dimensions is shown in Fig. 4. Free vibration analysis has been conducted by
employing the unconstrained-interface and the contact-interface models on the beam with single delamination of varying
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Table 4
Comparison of the experimental and the theoretical frequencies of cantilever beam with an off-midplane delamination (ht/h ¼ 0.33).

Specimen

span

(mm)

Dimension First mode Second mode

al

(mm)

hl

(mm)

Experiment

(Mujumdar

and

Suryanarayan

[3])

Mujumdar and

Suryanarayan [3]

Present analysis Experiment

(Mujumdar

and

Suryanarayan

[3])

Mujumdar and

Suryanarayan [3]

Present analysis

Constrained

mode (Hz)

Free

mode

(Hz)

Contact-

interface

model

(Hz)

Unconstrained-

interface

model (Hz)

Constrained

mode (Hz)

Free

mode

(Hz)

Contact-

interface

model

(Hz)

Unconstrained-

interface

model (Hz)

240.0 153.5 96.0 31.6 32.37 32.26 31.14 31.11 172.1 176.46 159.86 171.00 156.24

250.0 104.0 148.0 31.7 31.99 31.98 31.49 31.51 190.5 200.67 198.74 197.88 197.23

175.0 133.0 88.5 56.9 58.06 57.97 56.45 56.35 339.3 346.35 248.96 337.49 244.42

200.0 122.0 106.0 46.6 47.21 47.18 46.37 46.34 291.0 297.06 260.88 292.43 258.95

155.0 122.0 61.0 69.1 69.95 69.93 69.93 68.82 363.7 361.63 281.76 361.76 249.20

225.0 134.0 138.0 40.1 39.57 39.54 39.73 39.51 237.9 243.66 223.13 236.91 222.20

200.0 134.0 113.0 49.6 48.46 48.40 48.61 48.47 297.3 302.51 241.96 299.46 238.28

175.0 134.0 88.0 60.6 59.57 59.48 59.56 59.50 358.6 354.17 247.87 356.74 247.65

a

h/2 

hl

Left support   
 (Clamped)

al = a/2 

1

2

3

4

 Lamina Interface 

delamination

0°

90°

0°

90° Laminate
mid-plane 

Fig. 4. Geometry of the eight layer symmetric composite laminated beam [(01/901)2s] showing various interfaces for delamination.
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length and at different interfaces. The frequencies for the first two modes of vibration are tabulated in Table 5–8. The
fundamental frequencies obtained through the experiment and the theoretical models by Shen and Grady [5] are also been
presented in the table for proper comparison. It has been observed that the fundamental frequencies obtained by both the
present models closely matches with the experimental results as well as with the model-A of Shen and Grady [5] for all the
cases. However, the frequencies obtained by the present two models differ significantly with each other for the second
mode of vibration. The unconstrained-interface model has been found to yield low frequencies for the second mode, as
compared to those obtained by the contact-interface model, particularly, for the cases with off-midplane delamination
(Tables 6–8). To ascertain the reason for this discrepancy, mode shapes showing the variation of the normalized
displacements W̄ and Ū as well as the stresses s̄Z and t̄XZ along the length at the delaminated interface are drawn.
Figs. 5(a–d) and 6(a–d) show these variations for the first and second modes of vibrations for the beam with delamination
length al ¼ 76.2 mm, at the interface 3, respectively. It is interesting to note that both the models resulted into similar mode
shapes for the first mode of vibration. For this mode, similar to the contact-interface model, the unconstrained-interface

model has also been found to maintain the compatibility of transverse displacement W̄ at the delaminated interface
(Fig. 5(a)). However, under the second mode of vibration, the unconstrained-interface model fails to maintain
the deformation compatibility. It has been found to yield overlapping of transverse displacements W̄ of the upper and
the lower layers at the delaminated region (Fig. 6(a)). Similarly the variations of the in-plane displacement Ū and the
stresses s̄Z and t̄XZ along the length of the beam, as depicted by the unconstrained-interface model in Fig. 6(b–d) show
unrealistic variation in the delaminated region, whereas the contact-interface model has been found to present a realistic
mode shapes under both the modes of vibrations.

From the observations of Examples 2 and 3, it can be concluded that the unconstrained-interface model is not suitable for

the analyses of the delaminated beams, particularly with off-midplane delamination. The contact-interface model has been

found to represent reasonably correct behaviour of the delaminated beams.
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Table 5
Natural frequencies of eight-layer cross-ply laminated beam with delamination along interface 1.

Specimen

dimension

Fundamental frequency (in Hz) Frequency in mode 2 (in Hz)

(a ¼ 127.0 mm,

b ¼ 12.70 mm,

h ¼ 1.016 mm)

Experimental (Shen and Grady [5]) Analytical model

(Shen and Grady

[5])

Present analysis Present analysis

al

(mm)

hl

(mm)

Specimen

1

Specimen

2

Specimen

3

Model

Aa

Model

Bb

Unconstrained-

interface model

Contact-

interface model

Unconstrained-

interface model

Contact-

interface model

63.50 0.00 79.875 79.875 79.750 82.042 82.042 81.873 81.873 519.238 519.238

63.50 25.4 78.376 79.126 77.001 80.133 67.363 81.229 81.229 515.166 515.166

63.50 50.8 74.375 75.000 76.751 75.285 56.479 76.601 76.601 492.376 492.376

63.50 76.2 68.250 66.250 66.375 66.936 47.898 67.471 67.471 420.406 420.406

63.50 101.6 57.623 57.502 57.501 57.239 40.586 56.891 56.891 329.402 329.402

a Crack interfaces is assumed to be in contact along the delaminated region throughout the vibration and the coupling effect is accounted for in both

the upper and lower plies in the delaminated region.
b The contact between the delamination surfaces is neglected.

Table 6
Natural frequencies of eight-layer cross-ply laminated beam with delamination along interface 2.

Specimen

dimension

Fundamental frequency (in Hz) Frequency in mode 2 (in Hz)

(a ¼ 127.0 mm,

b ¼ 12.70 mm,

h ¼ 1.016 mm)

Experimental (Shen and Grady [5]) Analytical model

(Shen and Grady

[5])

Present analysis Present analysis

al

(mm)

hl

(mm)

Specimen

1

Specimen

2

Specimen

3

Model

Aa

Model

Bb

Unconstrained-

interface model

Contact-

interface model

Unconstrained-

interface model

Contact-

interface model

63.50 25.4 78.375 78.375 76.626 81.385 68.776 81.285 81.285 515.265 515.270

63.50 50.8 75.126 75.250 75.001 78.103 59.438 76.978 76.980 493.949 494.048

63.50 76.2 64.001 70.001 69.876 71.159 51.180 68.330 68.335 425.078 425.736

63.50 101.6 45.752 49.751 49.502 62.121 43.860 57.971 57.977 329.115 334.136

a Crack interfaces is assumed to be in contact along the delaminated region throughout the vibration and the coupling effect is accounted for in both

the upper and lower plies in the delaminated region.
b The contact between the delamination surfaces is neglected.

Table 7
Natural frequencies of eight-layer cross-ply laminated beam with delamination along interface 3.

Specimen

dimension

Fundamental frequency (in Hz) Frequency in mode 2 (in Hz)

(a ¼ 127.0 mm,

b ¼ 12.70 mm,

h ¼ 1.016 mm)

Experimental (Shen and Grady [5]) Analytical model

(Shen and Grady

[5])

Present analysis Present analysis

al

(mm)

hl

(mm)

Specimen

1

Specimen

2

Specimen

3

Model

Aa

Model

Bb

Unconstrained-

interface model

Contact-

interface model

Unconstrained-

interface model

Contact-

interface model

63.50 25.4 79.625 80.125 80.625 81.461 75.137 81.729 81.733 513.233 514.131

63.50 50.8 79.500 81.875 77.875 79.932 70.416 80.462 80.508 440.304 508.608

63.50 76.2 75.625 77.125 78.125 76.712 65.058 77.359 77.544 226.024 486.747

63.50 101.6 73.376 73.627 70.376 71.663 59.131 71.604 72.955 128.555 436.956

a Crack interfaces is assumed to be in contact along the delaminated region throughout the vibration and the coupling effect is accounted for in both

the upper and lower plies in the delaminated region.
b The contact between the delamination surfaces is neglected.
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4. Conclusions

The free vibrations of delaminated composite beams have been presented in this paper. The 2-D (plane-stress) mixed
finite element model developed by the authors [1] has been employed with the two conceptual models for delaminated
portion of the beam, namely the unconstrained-interface and the contact-interface models. Because the mixed finite element
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Table 8
Natural frequencies of eight-layer cross-ply laminated beam with delamination along interface 4.

Specimen

dimension

Fundamental frequency (in Hz) Frequency in mode 2 (in Hz)

(a ¼ 127.0 mm,

b ¼ 12.70 mm,

h ¼ 1.016 mm)

Experimental (Shen and Grady [5]) Analytical model

(Shen and Grady

[5])

Present analysis Present analysis

al

(mm)

hl

(mm)

Specimen

1

Specimen

2

Specimen

3

Model

Aa

Model

Bb

Unconstrained -

interface model

Contact-

interface model

Unconstrained -

interface model

Contact-

interface model

63.50 25.4 75.375 75.250 77.250 81.598 75.834 81.753 81.754 513.729 514.166

63.50 50.8 69.376 68.001 69.375 80.383 71.881 80.727 80.743 476.638 510.323

63.50 76.2 65.375 59.625 – 77.698 67.181 77.887 78.024 227.614 487.668

63.50 101.6 52.750 57.876 56.251 73.147 61.704 73.090 73.783 126.076 441.835

a Crack interfaces is assumed to be in contact along the delaminated region throughout the vibration and the coupling effect is accounted for in both

the upper and lower plies in the delaminated region.
b The contact between the delamination surfaces is neglected.
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model contains the transverse stress components as the nodal variables along with the displacement variables, it aptly
maps the elastic behaviour of laminated composite beams with delamination. Based on the numerical investigations
following conclusions may be drawn.
�
 Excellent correlation with the experimental results has been obtained through the contact-interface model. This validates
the model. The variation of the transverse stresses along the length of the beam at the delaminated interface show
shooting of these stresses at the delamination fronts, which increases with the higher mode of vibrations.

�
 The unconstrained-interface model in which the contact between the upper and the lower layers at the delaminated

interface has been neglected during the vibration, does not present a realistic behaviour of the beam, particularly at the
higher mode of vibrations.

�
 The present analysis could easily be extended to the laminated beams with multiple delaminations. Further, the present

mixed FE model along with the contact-interface model could be utilized for an inverse analysis to identify the
delamination properties from dynamical measurements.
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